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Abstract 
 

Using economics “laboratory” experiments, psychologists have demonstrated a 

variety of behavioural biases which affect individual investors.  Investors are loss 

averse, do not aggregate individual positions but treat them separately, and use 

subjective probabilities which underweight likely outcomes and overweight unlikely 

ones (the favourite/longshot bias).  Kahneman and Tversky (1979) developed 

prospect theory to take these features into account.   We examine whether these biases 

are reflected in the prices of options on the S&P500 index.  In particular, we would 

like to know whether cumulative prospect theory can explain the extraordinary 

steepness of the volatility smile in the loss domain, which is equivalent to a risk-

neutral distribution with a fat left-hand tail.  We begin by confirming with our data 

from 1990 to 2004 that there is a favourite/longshot bias in the option prices, such that 

some options are consistently overpriced and others are consistently underpriced.  We 

then simultaneously estimate the parameters of the subjective probability weights and 

the prospect-theory pay-off function, under the assumption that there is a 

representative investor who is following a portfolio-insurance strategy.    This allows 

us to make (to the best of our knowledge) the first systematic test of whether the 

parameters estimated in a market environment are similar to those found in laboratory 

experiments.  
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Introduction 

 

It is widely accepted that individual investors do not always behave in a way which is 

consistent with the maximisation of expected utility.  They face difficulties of 

information about the appropriate models and it can be costly to obtain the necessary 

data about market conditions.  If professional investors are the dominant group, then 

the paradigm of rational agent behaviour may yet apply (Fama 1998).  On the other 

hand professionals may not always be dominant in the short-run, as seems to have 

happened in the DotCom bubble (Ofek and Richardson 2003). 

 

In this paper we examine whether the “biases” to which psychologists have drawn 

attention can help to explain peculiarities in the pricing of S&P500 index options.  To 

do this we are going to apply prospect theory (Kahneman & Tversky 1974, 1979, 

Tversky & Kahneman 1992) to options pricing.  To the best of our knowledge, this is 

the first paper to make a systematic test of prospect theory in this way. 

 

The focus of our paper is on implementing cumulative prospect theory (Tversky and 

Kahneman, 1992, KT hereafter) which incorporates three particular features of 

investor behaviour which run counter to the neoclassical view.  The first is that they 

are loss-averse, so that the pain of a losing position is greater than the joy from one 

which is winning.  The second is that the individual does not consider his or her total 

wealth when making a decision but rather each individual investment is treated 

separately.  There is no aggregation of positions into total wealth as there is in 

portfolio theory.  The third feature is that individuals tend to make biased probability 

estimates; they underweight the probability of likely outcomes and overweight the 

probability of unlikely outcomes.  This has become known as the “favourite/longshot 

bias”, as it has been widely discussed in the context of horse-racing (Thaler and 

Ziemba, 1988). 

 

In this paper we ask whether or not some of these biases are present in aggregate data 

on broad asset and investment classes, in particular using market data associated with 

financial derivatives on stock indices. This is a challenging environment in which to 

test these theories since these markets are heavily traded by a large number of market 
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participants, so that any bias present would have to be common to a very wide number 

of participants who have the ability to lay off many aspects of their risks. 

 

We have chosen to apply the theory to S&P500 options because they provide a very 

rich cross section of data points.  For each day it is simple to infer a risk-neutral 

density and to be confident in the result. Our procedure begins by assuming that the 

objective (real-world) density is log-normal.  We then use the data for that day to 

determine not only the prospect-theory parameters but also the location and volatility 

of the real-world density.  The procedure minimises the squared errors of the observed 

prices from their model values.  In effect, we are using prospect theory as a structural 

model for the transformation of real-world distributions to risk-neutral distributions.  

Several researchers have drawn attention to the peculiarities which exist in index-

option prices, most notably to the steepness of the volatility smile (e.g. Bates 2000, 

Bollen and Whaley 2003, Branger and Schlag 2004).  There has been much debate 

about whether the preferences underlying such a skewed distribution can be explained 

in a rational framework (Jackwerth 2000, Rosenberg and Engle 2002, Bliss and 

Panigirtzoglou, 2002, Brown and Jackwerth 2004).  Our aim is to see whether 

cumulative prospect theory be used to explain this apparent mispricing. 

 

 

Data 

 

We use CBOE data for (SPX) options on the spot S&P500 value, these are European 

style. For the period 1990 to 2004 our dataset contains options on a monthly as well 

as quarterly cycle i.e. up to 12 expiry months in a year (expiry is on the third Friday of 

the month). However the off quarter months, Jan, Feb, Apr etc, only trade closer in 

time to their expiry than Mar, Jun, Sep, Dec. Many strikes are traded within each 

series, strikes have a minimum separation of 5 index points although the initial 

interval is larger when the contract is first introduced. It does however provide a large 

dataset of option prices (almost one million) across approximately 2,500 trading days. 

A typical cross section of first nearby contracts may contain a total of more than 150 

call or put contracts – the second nearby etc, contain fewer1. 

                                                 
1 Thanks go to Fergal O’Brien for his help with this data. 
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Our paper is most closely related to Rasiel (2003) and Hodges, Tompkins and Ziemba 

(2003), both of which also try and account for option-pricing anomalies through the 

use of prospect theory. However, in this paper we are careful to use methods (for 

preferences) which although inconsistent with marginal utilities (which should be 

monotonic) are not inconsistent with aggregation and other pricing (no arbitrage) 

techniques. 

 

We also have a more comprehensive dataset; by way of example (the following) 

Figure 1 which uses a large number of option returns to illustrate some of the features 

discussed. For holding periods of 21 days, the (annualised) returns from portfolio 

insurance strategies are shown. The panel on the left constructs these with the 

underlying index and a protective put (S+P) while the panel on the right uses cash 

plus a call (C+X), both do so for different levels of X i.e. insurance level. The returns 

are plotted agains the ex-ante probability estimated using risk neutral Black Scholes 

measure. 

 

A can be seen from the graph, either the risk premium is low, the probabilities are 

mis-estimated or the options themselves are subject to pricing biases, since the 

realised returns and their bin averages (in circles) do not appear to increase much 

across the probability range. A combination of the factors could also contribute to this 

feature. 
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Figure 1: Returns and average returns (circles) to portfolio insurance strategies 

of different probability 
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In the sections that follow, we will outline some asset pricing theory which is needed 

to show how we adapt the KT preference into a pricing function. We will also outline 

which subjective probability transformations are appropriate in this setting. We then 

use these to fit observed option prices for many days over the period 1990 to 2004. 

Finally, we will look at the sample historical realisations and test their distribution 

against those implied from density and option estimates. 

 

 

Asset pricing and Prospect Theory 

 

Non-normal returns pose particular challenges and opportunities to asset pricing 

theory. In particular the potential existence and direction of skewness in the 

distribution of market returns (accompanied with a signed skewness preference) 

greatly increases the range of phenomena that asset pricing can tackle (see  

Barberis, Huang & Santos 2001 and Barberis & Huang 2004). 
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This is particularly important in the context of option pricing since the main, and most 

persistent, feature derived from option prices is the degree of negative skewness 

implied by the risk neutral density. This is to say that when option prices are used to 

infer an implied risk neutral density (RND), the result is a distribution which is more 

negatively skewed than can be justified by subsequent historical realisations. 

 

One possible explanation of this artefact is that ever since October 1987 (Bates 2000), 

market participants have anticipated the possibility of a crash of similar magnitude 

even though it has not occurred in almost 20 years. Clearly the possibility of another 

such crash raises the question of the magnitude of its probability, which may have 

been previously been considered zero. 

 

This negative skewness is difficult to model and price using (risk neutral) diffusion 

dynamics. The Black Scholes model itself has long been known to possess a smiling, 

not constant, implied volatility as a function of future asset price states (other models 

such as Heston’s which include stochastic volatility are also difficult to calibrate with 

one parameter set). Furthermore using utility transformations alone (see Jackwerth 

2000, Rosenberg and Engle 2002, Liu et al 2003), it is difficult to account for the 

difference in skewness across each of the following (three) density types; those 

implied from options, those from modelled diffusions and finally those sampled from 

historical data. This is why we believe that a prospect theory approach that embraces 

subjective probability distributions and (non utility) decision weights will be more 

successful. 

 

 

Subjective probability densities (favourite/longshot bias) 

 

Within prospect theory there are decisions to be made at two levels. First is a 

weighting w(P) function that the (true and cumulative P) probability from a 

distribution will receive when a (biased) individual forms an opinion. Many such 

weighting functions w exist (see Prelec 1998 and Stott 2003) but we use the so called 

(Goldstein Einhorn) weighting function. These are tractable having the advantage of 

being linear in log odds. The uncertain object is the stock index level ST at some 

distant time T. 
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The two parameters, beta and delta control the relative moments of the derived 

distribution. Figure 2 shows an example of a transformation with beta=0.4 and 

delta=0.8. 

 

Figure 2: Weighted and Unweighted Probabilities 
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Objective densities 

 

The one thing all market participants can agree on are the option prices themselves 

and therefore their implied RNDs. Therefore flexible models are important since we 

would like to be able to fit RNDs at a first stage.  
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Modelling choices – Value function 

 

A form of derived “utility” must be chosen. The most common form in prospect 

theory has a threshold above and below which behaviour is different. To the right 

(above) the threshold the value function is convex below it is concave, both positive 

and negative convexity captured through a parameter alpha. These so called gain and 

loss domains are also different in that the (local) slopes at the threshold can differ on 

either side. This is captured by a second parameter lambda. 
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The first line applies in the case where the terminal stock index level exceeds a 

critical threshold S*, (ST > S*) whereas the second applies in the other case (ST < S*). 

There is a restriction on parameters S* and lambda that prevents the derived KT value 

function from becoming negative. Figure 3 shows a typical pattern for a prospect 

theory value function, note its asymmetry in convexity and slope. 

 

Figure 3: The Value Function in Prospect Theory 
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Note that if lambda = alpha = 1 the value function reverts to linear which is consistent 

with risk neutrality, thus the models we estimate encompass risk neutrality as a 

special case. This means that when fitting prices, we would expect a model with no 

lambda or alpha restrictions to do better than a (parameterised) fit of risk neutral 

densities and pricing. 

 

We then use these two modelling features of prospect theory in a similar fashion to 

the change in probability measure between real (RW) and risk neutral (RN) worlds 

that is used in asset pricing along with the marginal utility measure that is also 

embedded in the asset pricing kernel. 

 

We aim to account for the stylised facts from options markets using either a 

probability transformation or a behavioural (and potentially irrational) value function 

or a combination of both. Much of this can be done within the asset pricing 

framework by relaxing the monotonicity of marginal utility assumption alone. 

 

 

 

Results & Conclusion 

 

As well as presenting further results for returns derived from a portfolio insurance 

strategy, the remainder of the paper will show results of calibrations of the proposed 

models. These will then be tested to examine the extent to which they can account for 

some of the biases observed. 
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